Gliederung der Diplomarbeit

- verwendete Formelzeichen, Symbole und Abkürzungen	Seite 5
0. Einleitung	Seite 9
1. Aufgabe und Zielstellung	Seite 11
1.1. Technische Beschreibung 1.2. Istzustand 1.2.1. Elektrohydraulische Anlage 1.2.2. Meß- und Regelungstechnik 1.2.3. Systemvoraussetzungen 1.3. Zielstellung	Seite 11 Seite 12 Seite 12 Seite 13 Seite 15 Seite 16
2. Modellbildung an elektrohydraulischen Anlagen	Seite 17
2.1. Theoretische Modellbildung 2.2. Simulation 2.2.1. Simulationsmodell 2.2.1.1. Verwendete Größen 2.2.1.2. Die Ölstromquelle 2.2.1.2.1. Das Druckbegrenzungsventil 2.2.1.2.2. Die Konstantdruckquelle 2.2.1.2.3. Die Konstantleistungsquelle 2.2.1.3. Die elastische Übertragungsleitung 2.2.1.4. Das Servoventil	Seite 17 Seite 17 Seite 18 Seite 19 Seite 21 Seite 21 Seite 24 Seite 26 Seite 29 Seite 31 Seite 33
2.2.1.5. Das Prop-Einbauventil 2.2.1.6. Der Arbeitszylinder 2.2.1.7. Die Zusammenschaltung entsprechend der Belastungseinrichtun 2.2.1.8. Weitere benötigte Modelle 2.2.2. Der Einfluß der Öltemperatur auf das Streckenmodell 2.2.3. Ermittlung der Parameter für das Simulationsmodell 2.3. Vereinfachungen für den praktischen Einsatz /Reglerentwurf 2.3.1. Vereinfachtes Modell für die Lageregelung 2.3.2. Vereinfachtes Modell für die Kraftregelung 2.4. Kennwertermittlung 2.4.1. Sprungantwort	Seite 36 ag Seite 41 Seite 43 Seite 44 Seite 46 Seite 49 Seite 49 Seite 52 Seite 54 Seite 54
2.4.2. Schwingungsversuch 2.4.3. Driftabgleich	Seite 56 Seite 61

3. Regelungskonzept

Steffen Leßke TU Chemnitz-Zwickau	Diplomarbeit Gliederung
6.1.5. Ablauf der Versuche	Seite 110
6.2. Meßergebnisse	Seite 110
6.2.1. Aufnahme der Sprungantwort für die Lageregelung	Seite 110
6.2.2. Schwingungsversuch für die Lageregelung	Seite 117
6.2.3. Ermittlung der Totzone	Seite 120
6.2.4. Ergebnisse im geschlossenen Lageregelkreis	Seite 124
6.2.5. Messungen an der Kraftregelstrecke	Seite 127
7. Zusammenfassung	Seite 131
7.1. Der theoretische Ansatz	Seite 131
7.2. Das Regelungskonzept	Seite 132
7.3. Die automatische Inbetriebnahme	Seite 132
7.4. Durchführung und Auswertung der Versuche	Seite 133
7.5. Die Software	Seite 133
7.6. Schlußwort	Seite 134
8. Thesen zur Diplomarbeit	Seite 135
Anhang	
A - Berechnung der Pulsübertragungsfunktion	Seite 137
0. Einleitung	Seite 137
1. Übertragungsfunktion im La-Place-Bereich	Seite 137
2. Halteglied	Seite 137
3. Z-Übertragungsfunktion mit vorgeschaltetem Halteglied	Seite 138
4. Partialbruchzerlegung	Seite 139
5. Z-Transformation	Seite 140
6. Berechnungsschritte	Seite 142
B - Softwarelisting	Seite 143
2.2.1. Simulationsmodell	Seite 143
2.4.2. Schwingungsversuch	Seite 146
3.2.1. Die sinoide Übergangsfunktion	Seite 148
3.3. PL-Regler	Seite 152
5. Software	Seite 154
Anhang A	Seite 162
C - Schlagwortverzeichnis	Seite 163
O	

Diplomarbeit Gliederung	Steffen Leßke TU Chemnitz-Zwickau
D - Literaturverzeichnis	Seite 171
E - Verzeichnis der Abbildungen und Dateien	Seite 173
E.1. Word-Dokumente	Seite 173
E.2. Abbildungen	Seite 173
E.3. MatLAB - Programme	Seite 175
E.4. TurboPascal - Programme	Seite 178
F - Selbständigkeitserklärung	Seite 181